现有的在线多标签分类工作无法处理在线标签阈值问题,并缺乏对其在线算法的遗憾分析。本文提出了一种用于在线多标签分类的自适应标签阈值算法的新框架,旨在克服现有方法的缺点。我们的框架的关键特征是,何种评分和阈值模型都包含在线多标签分类器的重要组成部分,并纳入一个在线优化问题。此外,为了建立评分和阈值模型之间的关系,导出了一种新的多标签分类损失函数,该丢失函数是多个标签分类器可以区分传入实例的相关标签和无关的程度。基于这种新的框架和损失功能,我们介绍了一阶线性算法和二阶算法,均享受封闭式更新,但依赖于更新多标签分类器的不同技术。证明这两种算法都达到了子线性遗憾。使用Mercer Kernels,我们的一阶算法已经扩展到处理非线性多标签预测任务。实验表明我们的线性和非线性算法的优势,就各种多标签性能指标而言。
translated by 谷歌翻译
Federated learning (FL) is a method to train model with distributed data from numerous participants such as IoT devices. It inherently assumes a uniform capacity among participants. However, participants have diverse computational resources in practice due to different conditions such as different energy budgets or executing parallel unrelated tasks. It is necessary to reduce the computation overhead for participants with inefficient computational resources, otherwise they would be unable to finish the full training process. To address the computation heterogeneity, in this paper we propose a strategy for estimating local models without computationally intensive iterations. Based on it, we propose Computationally Customized Federated Learning (CCFL), which allows each participant to determine whether to perform conventional local training or model estimation in each round based on its current computational resources. Both theoretical analysis and exhaustive experiments indicate that CCFL has the same convergence rate as FedAvg without resource constraints. Furthermore, CCFL can be viewed of a computation-efficient extension of FedAvg that retains model performance while considerably reducing computation overhead.
translated by 谷歌翻译
Reinforcement learning (RL) problems can be challenging without well-shaped rewards. Prior work on provably efficient RL methods generally proposes to address this issue with dedicated exploration strategies. However, another way to tackle this challenge is to reformulate it as a multi-task RL problem, where the task space contains not only the challenging task of interest but also easier tasks that implicitly function as a curriculum. Such a reformulation opens up the possibility of running existing multi-task RL methods as a more efficient alternative to solving a single challenging task from scratch. In this work, we provide a theoretical framework that reformulates a single-task RL problem as a multi-task RL problem defined by a curriculum. Under mild regularity conditions on the curriculum, we show that sequentially solving each task in the multi-task RL problem is more computationally efficient than solving the original single-task problem, without any explicit exploration bonuses or other exploration strategies. We also show that our theoretical insights can be translated into an effective practical learning algorithm that can accelerate curriculum learning on simulated robotic tasks.
translated by 谷歌翻译
In recent years, large amounts of effort have been put into pushing forward the real-world application of dynamic digital human (DDH). However, most current quality assessment research focuses on evaluating static 3D models and usually ignores motion distortions. Therefore, in this paper, we construct a large-scale dynamic digital human quality assessment (DDH-QA) database with diverse motion content as well as multiple distortions to comprehensively study the perceptual quality of DDHs. Both model-based distortion (noise, compression) and motion-based distortion (binding error, motion unnaturalness) are taken into consideration. Ten types of common motion are employed to drive the DDHs and a total of 800 DDHs are generated in the end. Afterward, we render the video sequences of the distorted DDHs as the evaluation media and carry out a well-controlled subjective experiment. Then a benchmark experiment is conducted with the state-of-the-art video quality assessment (VQA) methods and the experimental results show that existing VQA methods are limited in assessing the perceptual loss of DDHs. The database will be made publicly available to facilitate future research.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Data-Free Class Incremental Learning (DFCIL) aims to sequentially learn tasks with access only to data from the current one. DFCIL is of interest because it mitigates concerns about privacy and long-term storage of data, while at the same time alleviating the problem of catastrophic forgetting in incremental learning. In this work, we introduce robust saliency guidance for DFCIL and propose a new framework, which we call RObust Saliency Supervision (ROSS), for mitigating the negative effect of saliency drift. Firstly, we use a teacher-student architecture leveraging low-level tasks to supervise the model with global saliency. We also apply boundary-guided saliency to protect it from drifting across object boundaries at intermediate layers. Finally, we introduce a module for injecting and recovering saliency noise to increase robustness of saliency preservation. Our experiments demonstrate that our method can retain better saliency maps across tasks and achieve state-of-the-art results on the CIFAR-100, Tiny-ImageNet and ImageNet-Subset DFCIL benchmarks. Code will be made publicly available.
translated by 谷歌翻译
Vision Transformers convert images to sequences by slicing them into patches. The size of these patches controls a speed/accuracy tradeoff, with smaller patches leading to higher accuracy at greater computational cost, but changing the patch size typically requires retraining the model. In this paper, we demonstrate that simply randomizing the patch size at training time leads to a single set of weights that performs well across a wide range of patch sizes, making it possible to tailor the model to different compute budgets at deployment time. We extensively evaluate the resulting model, which we call FlexiViT, on a wide range of tasks, including classification, image-text retrieval, open-world detection, panoptic segmentation, and semantic segmentation, concluding that it usually matches, and sometimes outperforms, standard ViT models trained at a single patch size in an otherwise identical setup. Hence, FlexiViT training is a simple drop-in improvement for ViT that makes it easy to add compute-adaptive capabilities to most models relying on a ViT backbone architecture. Code and pre-trained models are available at https://github.com/google-research/big_vision
translated by 谷歌翻译
Surgery is the only viable treatment for cataract patients with visual acuity (VA) impairment. Clinically, to assess the necessity of cataract surgery, accurately predicting postoperative VA before surgery by analyzing multi-view optical coherence tomography (OCT) images is crucially needed. Unfortunately, due to complicated fundus conditions, determining postoperative VA remains difficult for medical experts. Deep learning methods for this problem were developed in recent years. Although effective, these methods still face several issues, such as not efficiently exploring potential relations between multi-view OCT images, neglecting the key role of clinical prior knowledge (e.g., preoperative VA value), and using only regression-based metrics which are lacking reference. In this paper, we propose a novel Cross-token Transformer Network (CTT-Net) for postoperative VA prediction by analyzing both the multi-view OCT images and preoperative VA. To effectively fuse multi-view features of OCT images, we develop cross-token attention that could restrict redundant/unnecessary attention flow. Further, we utilize the preoperative VA value to provide more information for postoperative VA prediction and facilitate fusion between views. Moreover, we design an auxiliary classification loss to improve model performance and assess VA recovery more sufficiently, avoiding the limitation by only using the regression metrics. To evaluate CTT-Net, we build a multi-view OCT image dataset collected from our collaborative hospital. A set of extensive experiments validate the effectiveness of our model compared to existing methods in various metrics. Code is available at: https://github.com/wjh892521292/Cataract OCT.
translated by 谷歌翻译
Graphic User Interface (GUI) is facing great demand with the popularization and prosperity of mobile apps. Automatic UI code generation from UI design draft dramatically simplifies the development process. However, the nesting layer structure in the design draft affects the quality and usability of the generated code. Few existing GUI automated techniques detect and group the nested layers to improve the accessibility of generated code. In this paper, we proposed our UI Layers Group Detector as a vision-based method that automatically detects images (i.e., basic shapes and visual elements) and text layers that present the same semantic meanings. We propose two plug-in components, text fusion and box attention, that utilize text information from design drafts as a priori information for group localization. We construct a large-scale UI dataset for training and testing, and present a data augmentation approach to boost the detection performance. The experiment shows that the proposed method achieves a decent accuracy regarding layers grouping.
translated by 谷歌翻译
Semantic segmentation usually benefits from global contexts, fine localisation information, multi-scale features, etc. To advance Transformer-based segmenters with these aspects, we present a simple yet powerful semantic segmentation architecture, termed as IncepFormer. IncepFormer has two critical contributions as following. First, it introduces a novel pyramid structured Transformer encoder which harvests global context and fine localisation features simultaneously. These features are concatenated and fed into a convolution layer for final per-pixel prediction. Second, IncepFormer integrates an Inception-like architecture with depth-wise convolutions, and a light-weight feed-forward module in each self-attention layer, efficiently obtaining rich local multi-scale object features. Extensive experiments on five benchmarks show that our IncepFormer is superior to state-of-the-art methods in both accuracy and speed, e.g., 1) our IncepFormer-S achieves 47.7% mIoU on ADE20K which outperforms the existing best method by 1% while only costs half parameters and fewer FLOPs. 2) Our IncepFormer-B finally achieves 82.0% mIoU on Cityscapes dataset with 39.6M parameters. Code is available:github.com/shendu0321/IncepFormer.
translated by 谷歌翻译